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Abstract

Quantum Machine Learning (QML) is an emerging research area advocating
the use of quantum computing for advancement in machine learning. Since the
discovery of the capability of Parametrized Variational Quantum Circuits (VQC) to
replace Artificial Neural Networks, they have been widely adopted to different tasks
in Quantum Machine Learning. However, despite their potential to outperform
neural networks, VQCs are limited to small scale applications given the challenges
in scalability of quantum circuits. To address this shortcoming, we propose an
algorithm that compresses the quantum state within the circuit using a tensor ring
representation. Using the input qubit state in the tensor ring representation, single
qubit gates maintain the tensor ring representation. However, the same is not true for
two qubit gates in general, where an approximation is used to have the output as a
tensor ring representation. Using this approximation, the storage and computational
time increases linearly in the number of qubits and number of layers, as compared
to the exponential increase with exact simulation algorithms. This approximation
is used to implement the tensor ring VQC. The training of the parameters of tensor
ring VQC is performed using a gradient descent based algorithm, where efficient
approaches for backpropagation are used. The proposed approach is evaluated
on two datasets: Iris and MNIST for the classification task to show the improved
accuracy using more number of qubits. We achieve a test accuracy of 83.33%
on Iris dataset and a maximum of 99.30% and 76.31% on binary and ternary
classification of MNIST dataset using various circuit architectures. The results
from the IRIS dataset outperform the results on VQC implemented on Qiskit, and
being scalable, demonstrates the potential for VQCs to be used for large scale
Quantum Machine Learning applications.

1 Introduction

Quantum computing has been demonstrably proven to be superior than classical computing when
solving problems such as searching an unstructured database [10] or factorization of large numbers
[22]. Due to the rising interest in the computation capabilities of noisy intermediate scale quantum
(NISQ) computers and the availability of experimentation platforms, there has been a rapid growth in
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the development of circuit based algorithms. Variational Quantum Circuits or Parametrized Quantum
circuits are one such class of the circuit based algorithms that has been studied extensively [1],
specifically in context of their capabilities in solving various combinatorial optimization problems
and intrinsic energy problems of molecules which were either intractable or computationally expensive
using classical devices. These studies have also been extended to use VQCs as a replacement for
artificial neural networks (ANN) in discriminative and generative tasks. VQCs have been studied
for their potential to achieve quantum advantage over their classical counterparts by reducing the
number of model parameters and faster learning time for comparable performance. Despite its
infancy, there are numerous works exploring the algorithmic aspects and applications of Variational
Quantum Circuits. VQCs have first been introduced in [19] which theoretically and numerically
proved that quantum circuits can approximate non-linear functions similar to neural networks. Several
works have developed Quantum Approximate Optimization Algorithm and its generalizations to train
parametrized quantum circuits using classical optimizers [30, 9, 18]. Circuit based algorithms have
been developed to emulate several methods from the classical machine learning literature such as
Long Short-Term Memory [3] and Convolutional Networks [4, 13]. VQCs have also replaced the
neural networks in Reinforcement Learning tasks [2, 14] and Generative Algorithms [20, 11]. It has
also been shown that that the VQCs have a better expressive power compared to neural networks [7].

Despite several studies pointing towards the promise of quantum superiority, a key challenge in the
the current era of quantum computing is the limited quantum resources which in turn limits the
number of qubits and the circuit depth. The other challenge is the inherent tendency of quantum
devices towards decoherence, random gate errors and measurement errors which might severely
limit the training of the variational circuits. To circumvent this issue, VQCs are often trained on
classical devices before deploying them on quantum devices in order to avoid the compounding
effect of decoherence noise throughout the numerous iterations required for training. However, the
simulation of quantum computations on a classical device grow exponentially harder in both the
number of qubits and the circuit depth. These shortcomings have limited the studies thus far to
shallow circuits with small number of qubits on small scale applications. One of the well studied
approaches to compress the information in the quantum state is using the matrix product states (MPS)
[21]. MPS and its generalizations have been used extensively in the classical simulation of quantum
circuits [24, 16] owing to their capability of accurately capturing low to moderate entanglements in
many-qubit quantum states. Several approximate techniques have been developed using the MPS
parametrization such as Density Matrix Renormalization Group (DMRG) [29], Projected entangled
pair states (PEPS) [23] and multi-scale entanglement renormalization ansatz (MERA) [25]. A recent
work [31] has constructed an approximation technique that effectively simulates a real quantum
device by inducing a noise to represent the decoherence which limits the amount of entanglement
that can be built into a quantum state. However, they (i) consider MPS structure, while we consider
an extension of that, and (ii) do not consider the problem of training VQCs.

We note that the MPS (also called tensor train (TT) representation) has been used for scalability
of quantum networks. However, such a decomposition suffers from the following limitations: (i)
TT model requires rank-1 constraints to the border factors, (ii) TT ranks are typically small for
near-border factors and large for the middle factors, and (iii) the multiplications of the TT factors are
not permutation invariant. In order to alleviate these issues, researchers have started to use tensor ring
(TR) representation in the classical machine learning [26, 27, 15]. TR decomposition removes the unit
rank constraints for the boundary tensor factors and utilizes a trace operation in the decomposition.
The multilinear products between factors also have no strict ordering and the factors can be circularly
shifted [26]. This allows for all ranks to be the same. Indeed, TR representation has been shown to
significantly outperform TT representation for data completion [26], compression of classical neural
networks [27], etc. This motivates the use of TR representation for compressing the quantum state in
the VQC in this paper.

In this paper, we consider the VQC architecture, where the parameters can be trained for classification.
We assume that the initial data is prepared in a known state, which is represented in a tensor ring
format. Then, the features are encoded using single qubit gate rotations to this tensor ring structure.
We note that any single qubit gate maintains the tensor ring structure. Further, the key component
of parametrized circuit in each layer of VQC consists of cyclic entanglement of qubits followed
by parametrized single qubit rotations. We note that the two qubit gates (e.g., CNOT gate) do not
preserve the tensor ring representation, where an approximation is performed for this gate which is
based on a singular value thresholding. We further note that the structure of tensor ring allows for

2



easy computations of 2-qubit gates for the neighboring qubits. Due to the use of a cyclic structure
of tensor ring, we are able to perform a CNOT from the last qubit to the first qubit too. While
other operations can be done, the complexity will be higher than performing the 2-qubit gates on
neighboring qubits (cyclically). We further note that since the tensor ring format is used, same rank r
can be used for each decomposition, which may not be the case for the standard MPS format. Using
this approximation, all the forward pass computations are linear in the number of gates. Further,
we note that the state vector is never stored, and only the decomposed tensors of the tensor ring
structure are stored. Thus, the storage complexity for n qubits reduces from O(2n) to O(nr2), where
r is the rank of the tensor ring. Similarly, we can compute the gradients with an efficient use of
backpropagation to learn the parameters in the VQC.

To the best of authors’ knowledge, this is the first work on scaling VQCs using tensor rings. We note
that the approximation of two-qubit gates using singular value decomposition brings non-linearity
in the operations, and is inherently like adding the ReLU or soft-max operation. in classical neural
networks. We believe that this non-linearity further helps in the selection of parameters of VQCs, and
thus helping achieve improved performance. We evaluate the performance of the proposed approach
on Iris and MNIST datasets. The performance is significantly better than the implementation of
VQCs in Qiskit [5]. This demonstrates that the proposed architecture using TR representation
outperforms not using approximation. This is likely because of introduction of non-linearity and
efficient computation of gradients in the compressed TR representation. Further, due to linear scaling
of computation and storage, this structure allows for scaling in the number of qubits, which has a
potential to demonstrate quantum supremacy in machine learning.

2 Methodology

2.1 Variational Quantum Circuits

A Variational Quantum Circuit or Parametrized Quantum Circuits are quantum circuits with unitary
rotation gates parametrized by trainable parameters. Several variational quantum algorithms have
been developed to train the aforementioned VQCs for tasks like optimization, approximation, and
classification. These variational quantum algorithms are usually quantum-classical hybrid algorithms
where the forward pass through the quantum circuits are evaluated using quantum transformations and
the parameters of the quantum circuit are trained using classical optimization algorithms. VQCs are
used in similar applications as that of neural networks which primarily include function approximation.
Quantum circuits use two qubit gates to encode entanglement into the quantum state which acts
analogous to the activation functions in neural networks. Note that the quantum circuits (which do
not include measurement) are linear reversible transformations and multitude of classical machine
learning literature has established the importance of non-linearity in function approximation. This
will be one of the key changes in our approximation, which will bring in non-linearity into the
approximation.

We demonstrate how a VQC works along with a pictorial representation in Figure 1. Initially, the
classical data is encoded into the qubits using rotations parametrized by the input data. The prepared
qubit state is then transformed through a series of unitary rotation parametrized by trainable weights
and entanglements. A subset of the transformed qubits are then measured to obtain the output in the
form of expected value. The expected values are decoded into the appropriate class labels. A loss is
computed akin to the neural networks using the decoded output and the labels from the dataset. The
free parameters are then updated using well established classical optimization algorithms such as
gradient descent, Adam, etc. The trained circuit can then be used to predict the labels of the test data.

2.2 Tensor Ring Parametrization of VQC

Quantum circuits become too difficult to simulate on classical computers for large number of qubits
since the storage and computation is exponential in the number of qubits. Tensor networks can be
thought of as a graphical representation of tensors, where each node in the graph is a tensor with a
finite rank (a rank-0 tensor is a scalar, rank-1 tensor is a vector, rank-2 tensor is a matrix etc.). A
tensor ring is a tensor network which aims to represent a higher order tensor by a sequence of 3rd
order tensors that are multiplied circularly as shown in Figure 2. A higher order tensor τ of rank d is
decomposed into d tensors denoted by M(k) each of rank 3 spanned by the indices {nk, rk, rk+1}
where rk and rk+1 represent the bond dimension (or elements of the rank vector).
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Figure 1: Illustration of a generic 4-qubit variational quantum circuit Rx(·) gates denote a
rotation about the x-axis on Bloch sphere by a certain angle. H represents the Hadamard gate. (See
Appendix for the matrix representations)(a) The first part of the circuit encodes the classical features
ψs onto the qubits, (b) the rotation gates with free parameters transform the qubits are denoted by
R(α, β, γ) and (c) a subset of the qubits are measured to obtain the output

Figure 2: Illustration tensor ring decomposition of a tensor of rank d

It has been shown that the tensor rings are a better and more effective compression algorithm than
tensor trains (or MPS format) [26, 27], which motivates our choice. The key is that the tensor train
representation has lower border ranks and larger interior ranks which limit an efficient representation,
while all ranks could be made similar in tensor ring format and thus decrease of ranks helps achieve
better representation at the same number of parameters. We also note that the typical format of VQC
has a cyclic entanglement, where the CNOT from the last qubit to the first qubit will not be directly
possible using the MPS representation, which further motivates the use of tensor ring format in this
paper. We represent the quantum state |φ〉 using N tensors, denoted by M(n), as below:

|φ〉 =
∑
i1...iN

∑
µ1...µN

M(1)i1µNµ1
M(2)i2µ1µ2

. . .M(N)iNµNµ1
|i1i2 . . . iN 〉 (1)

where in ∈ {0, 1} are the physical indices spanning the 2N dimensional Hilbert space while µn ∈
{1, . . . , χn} are the bond indices of the tensors which control the maximum amount of entanglement
captured by the tensor ring. If the χn is allowed to grow large, the tensor ring captures the exact
quantum state information which comes at a computational cost. When designing the training
algorithm, χn is considered to be one of the hyperparameter choices along with batch size, learning
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Figure 3: (a) A tensor ring structure representing the N-qubit state with bond dimension χ (b)
Applying a single qubit gate to the n-th qubit of a tensor ring (c) Applying a two qubit gate to n-th
and n+1-th qubits of a tensor ring and using the truncated SVD to decompose the resultant matrix
into new tensors

rate, etc. We assume χn = χ for all n, reducing the hyperparameters following [26]. This bond-
dimension χ is called the tensor ring rank. A tensor ring parametrization of an N-qubit state is
illustrated in Figure 3(a). Each square in the ring is a tensor of dimension χ×χ× 2. The open bonds
of the tensor ring index the 2-dimensional Hilbert space of the qubit corresponding to the site.

We first consider a one qubit rotation which is a tensor contraction of a 2× 2 matrix with the tensor
corresponding to the qubit. A one qubit rotation (represented by a unitary matrix U ) on nth qubit is
given by the following equation:

M ′(n)
i′n
µn−1µn =

∑
in

Ui′ninM(n)inµn−1µn
(2)

In order to perform a two qubit gate transformation on qubits n and n + 1, we first transform the
tensor ring into an orthogonal form centered around the qubits of interest. A series of operations are
performed followed by a singular value decomposition as shown below. The two tensors at n and
n+ 1 are first contracted along the shared bond index which is given by:

T inin+1
µn−1µn+1

=
∑
µn

M(n)inµn−1µn
M(n+ 1)in+1

µnµn+1
(3)

The two qubit gate (U , reshaped into Ui′ni′n+1inin+1
) is then applied on the two qubit tensor computed

in the previous equation:

(T ′)inin+1
µn−1µn+1

=
∑
inin+1

Ui′ni′n+1inin+1
T inin+1
µn−1µn+1

(4)

Finally, we reshape the tensor T ′ into a matrix of shape (i′n + µn−1)× (i′n+1 + µn+1), and perform
singular value decomposition of the matrix:

(T ′)inin+1
µn−1µn+1

=
∑
µn

X
i′n
µn−1µnSµnY

i′n+1
µnµn+1 (5)

where the X and Y matrices are composed of the orthogonal vectors and Sµ contains the singular
values of the matrix T ′. The matrix has 2χ singular values irrespective of the two qubit gate structure
where χ denotes the bond dimension of the tensor ring.We then truncate the Sµ matrix to keep only
the χ largest singular values and the resulting matrix is denoted by S′µ . X and Y are truncated to
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only keep the orthogonal vectors corresponding to the χ largest singular values. The new tensors
corresponding the two qubits are given by:

M ′(n)inµn−1µn
= Xin

µn−1µn
S′µn

(6)

M ′(n+ 1)in+1
µnµn+1

= Y in+1
µnµn+1

(7)

Without the approximation, the operation of 2-qubit gate will be exponential in the number of qubits,
the above operations are O(1) in the number of qubits, and thus helps scalability of the approach.
The single qubit and two qubit transformations are demonstrated in Figure 3.

2.3 Training

We first explain the overall VQC architecture. We prepare the initial N qubit state as |00 · · · 0〉, which
is then converted to a TR representation as M(i) is a χ× χ× 2 tensor with only (1, 1, 1) element as
1 and rest as zeros. Then, the data features are used to perform single qubit rotations as illustrated in
the encoding step of Fig. 1 (as one possible approach, while any other encoding mechanism can be
used). The parametrized gate circuit is chosen as a modification of that illustrated in Fig. 1. This
gate circuit is repeated d times to illustrate the depth of the circuit. Finally, some of the qubits are
measured, based on which the loss function is determined for training.

We evaluate the "forward pass" of the circuit by computing the single qubit and two qubit transfor-
mations as discussed in the previous sub-sections to obtain the final output obtained by measuring
certain number of qubits. The loss is then computed using both the final output and the ground truth,
and the gradients are calculated by backpropagating through the tensor ring structure similar to neural
networks. The details of backpropagation through quantum gates and singular value decomposition
can be found in [28, 12]. The gate parameters are then updated using a classical optimizer like Adam
owing to its promising performance with neural networks. Given the compression obtained by the
tensor ring representation and the the singular value decomposition used at the two qubit gates, the
training of the proposed method would be much faster than training the full VQC. Once trained, the
parameters can be deployed on a real quantum device to evaluate the performance on unseen data.

2.4 Complexity

We first note that we never store the quantum state, unlike in standard quantum circuit. So, at each
step of the operation, we only store the N tensors, giving an overall storage complexity of O(Nχ2),
where the tensor-ring rank χ is a hyper-parameter.

For computation, each computation of single or two-qubit gate in the tensor ring VQC is O(1), and
thus the overall complexity of the forward pass is O(Nd), or the size of the circuit/number of gates.
Similarly, each backpropagation round is the same complexity. Thus, each iteration of training has
complexity O(Nd), thus making the overall approach scalable in the number of qubits.

To illustrate the capabilities of the stated method of tensor rings for simulating variational quantum
circuits, we perform various experiments namely, iris classification [8], binary classification using
MNIST data set [6] on class 0 and 1, and ternary classification using MNIST data set on class 0, 1,
and 2.

2.5 Iris Classification

The Iris data set includes four features: sepal length, sepal width, petal length, and petal width. The
dataset is split in a ratio of 8 : 2 for training/testing data. The circuit ansatz chosen for the problem
is illustrated in Figure 4. The features are normalized before being encoded into the qubits. The
initially prepared 4-qubit state of |0000〉 is decomposed into a tensor ring as described before. The
features ψ extracted from the data are encoded onto the qubits using a layer of Rx gates. This is
followed by a sequence of CNOT gates entangling all the consecutive qubits. After this, a sequence
of single-qubit gates, i.e., Rx, Ry , and Rz (See Appendix for matrix representations), are applied to
each qubit with trainable parameters. Here, Rx(·), Ry(·), Rz(·) are rotation gates about the x, y and
z axes respectively in the Bloch sphere. The CNOT gate is represented by a connection between two
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Figure 4: Circuit architecture for the Iris Classification problem

qubit "wires" as show in Figure 4.The circular end of the connection represents the target qubit and
the dot end represent the control qubit. A NOT gate or Pauli gate X is applied on the target qubit
if the control qubit is a |1〉.The four feature vector is fed into the VQC for training. Out of the 24

possible measurements obtained from the VQC, we randomly select 3 measurements for representing
3 classes of the dataset. We further apply sigmoid function to selected measures to convert them to
class probabilities. Then, we utilize a cross entropy loss and back-propagate to obtain gradients for
each trainable parameter. In this experiment, we use an Adam optimizer with a learning rate of 0.001
for 50 epochs for a batch size of 4 . The model achieved a final train set accuracy of 72.5% and a test
set accuracy of 83.33% while the VQC implementation on Qiskit with full quantum state information
results in a train accuracy of 55.03% and a test accuracy of 57.04%

2.6 Binary Classification: MNIST

We perform a binary classification MNIST dataset with classes 0 and 1. MNIST dataset consists of
images of size 28× 28, which is reduced to a feature vector using an autoencoder. The autoencoder
consists of 2 convolution layers in encoder assembly and 3 transpose convolution layers in the decoder
assembly. We generate a feature space of dimension 4, 8, 16 and 32 for multiple experiments.The
cirucit structure uses the same layer as the experiment in IRIS dataset, however multiple experiments
are conducted by repeating these layers multiple times. The initially prepared qubit state |0000〉 for
a 4 dimension feature space is decomposed into a tensor ring as described before. We select the
final measurements |0000〉 and |1111〉 as output values for 2 classes. We further apply logarithmic

Dataset #qubits Tensor Ring VQC
1 layer 2 layers 3 layers

IRIS 4 83.33% - -
4 79.57% 98.51% 99.30%

MNIST
(0 & 1)

8 90.01% 85.70% 92.84%
16 80.73% 95.72% 93.45%
32 75.53% 94.84% 97.58%

MNIST
(0,1&2)

4 74.08% 74.51% 54.75%
8 76.31% 67.05% 58.92%

16 53.88% 52.67% 70.35%
Table 1: Results from training VQCs with varying number of qubits and circuit ansatz on three
datasets
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Figure 5: Performance of Tensor Network w.r.t number of qubits and number of layers in the circuit
on binary classification of MNIST
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Figure 6: Performance of Tensor Network w.r.t number of qubits and number of layers in the circuit
on ternary classification of MNIST

sigmoid function to selected measurements to obtain class probability and compute a negative log
likelihood loss and backpropagate to obtain gradients. The accuracy curves with respect to number of
qubits layers are shown in Figure 5.

2.7 Ternary Classification: MNIST

We perform a ternary classification MNIST dataset with classes 0, 1, and 2. The feature vector
is generated in the same way as binary classification using autoencoders, experimenting with 4,
8 and 16 qubit states. We use a similar ansatz as binary classification with the variational layer
repeating multiple times. We select 3 possible measurements as value for 3 classes. We further apply
logarithmic sigmoid function to selected measurements and compute a negative log likelihood loss
and back propagate. The VQC is trained with an Adam optimizer with a learning rate of 0.01 and a
batch size of 10000 for 5 epochs. The accuracy curves with respect to number of qubits layers are
shown in Figure 6.

2.8 Discussion

The overall results are summarized in Table 1. We observe a general pattern of increasing classification
accuracy with the increasing number of qubits since a larger number of qubits indicate a larger Hilbert
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space to parametrize the input data. We also notice that in the case of IRIS dataset, the tensor ring
parametrized VQC significantly outperforms the vanilla implementation of VQC with full quantum
state information owing to the additional non-linearity induced by the truncated singular value
decomposition over the two qubit gate transformations. The tensor ring approximation also offers
improved training speed as compared to the standard VQC due to linear complexity, which was
observed in our evaluations for 8 qubits.

3 Conclusion

In this work, we propose a new technique to train Variational Quantum Circuits using an approximate
tensor ring representation of the quantum state. The computational time of the circuit evaluation
grows linearly in the number of qubits N and the depth of the circuit d with the proposed method, as
compared to the exponential growth in the simulation of ideal quantum computers. We train the tensor
ring variational quantum circuits using the proposed approach on Iris and a subset of MNIST datasets.
The performance is significantly better than the implementation of VQCs in Qiskit. This demonstrates
that the proposed architecture using TR representation outperforms not using approximation. Thus,
we see that the approximation helps in both the scalability as well as performance improvement.

We note that the quantum circuit (except measurement) are linear in the Hilbert space, while the
added approximation of two-qubit gates bring non-linearity in the circuit, similar to Rectified Linear
Unit(ReLU) or soft-max in the classical neural networks. One of the major challenges in training
large scale quantum circuits is the barren plateau effect [17] which demands good initialization to
achieve comparable results. However, it is still to be seen whether this is also a challenge in tensor
network representations of variational quantum circuits for even larger quantum bits. It would also
be interesting to see the performance of proposed approach replacing neural networks in tasks like
Reinforcement Learning or Generative Adversarial Networks etc.

4 Appendix

The matrix representation of some of the commonly used gates in the manuscript are listed below:

Rx(θ) =

[
cos(θ/2) −isin(θ/2)
−isin(θ/2) cos(θ/2)

]
, Ry(θ) =

[
cos(θ/2) −sin(θ/2)
sin(θ/2) cos(θ/2)

]
, Rz(θ) =

[
e−iθ/2 0

0 eiθ/2

]

H =
1√
2

[
1 1
1 −1

]

CNOT =

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


R(α, β, γ) =

[
cos(α/2) −eiγsin(α/2)

eiβsin(α/2) eiβ+iγcos(α/2)

]
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